jump to navigation

Evoluţia unei stele pe diagrama H-R – Sfârşitul vieţii unei stele: Viaţa de dupa Secvenţa Principală Iunie 19, 2010

Posted by EvolutieStelara in Diagrama Hertzsprung - Russell, Evolutie Stelara.
Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
add a comment

Când tot hidrogenul din nucleul stelei se va fi transformat în heliu, un timp acesta va deveni inactiv în ceea ce priveşte reacţiile nucleare, si se va contracta sub propria gravitaţie.

La o stea de o masă mai mica, nucleul de heliu inactiv va avea o temperatură iniţială de 15 milioane K, şi pe măsura ce nucleul se contractă temperatura va creşte. Astfel învelişul de hidrogen se va încălzi şi va dilata învelişul stelei. Pe măsură ce se dilată, steaua cu o masă iniţială redusă se răceşte si se transformă, intr-o gigantă roşie.

În cazul unei stele cu 1 masă solara acest proces durează până la un miliard de ani. Dacă accelerăm timpul vom observa steaua cum se deplasează în sus şi puţin la dreapta în diagramă, ca rezultat al scăderii temperaturii, dar şi o creştere a luminozităţii, datorită creşterii suprafeţei. Acum steaua se află în zona RGB (Red Giant Branch) a diagramei H-R.

Presiunea din nucleul stelei este acum în creştere. O lege fundamentală a mecanicii cuantice numită Pricipiul de Excluziune Pauli (numită după fizicianul austriac Wolfgang Paulli) intră în scenă.

Din acest moment heliul care a fost creat în urma arderii hidrogenului va adăuga masă nucleului stelei cauzând creşterea temperaturii acestuia prin creşterea energiei gravitaţionale pâna când temperatura va atinge valoarea de 108K. În acest moment, nucleele ne-degenerate de heliu „uită” de electronii lor degeneraţi şi fuzionează într-o nouă reacţie termonucleară, numită procesul triplu-alfa (triple-alpha process).

Produsul final al acestui proces este carbonul şi într-adevăr câţiva atomi de carbon rezultaţi pot fuziona cu nuclee de heliu pentru a produce oxigen. La stelele cu o masă mică fuziunea heliului este relativ rapidă, mai mult sub formă de explozie în interiorul stelei, ceea ce se numeşte helium flash.

Steaua se deplasează mai mult sau mai puţin orizontal la stânga diagramei    H-R, de-a lungul a ceea ce se cheamă horizontal branch.

Pentru stele de mărimea Soarelui s-a demonstrat că nucleul cu o masă prea mică în urma contractării nu va genera niciodată o temperatură suficient de ridicată pentru a favoriza fuziunea carbonului.

După părăsirea secvenţei principale, Soarele se va deplasa în partea dreaptă , de sus a diagramei H-R ocupându-şi locul în zona AGB (Asyzmptotic Giant Branch).

Pulsurile termice care au loc la o stea aflată în AGB se presupune că ar contribui la instabilitatea pulsatorie a stelei, devenind ceea ce e cheamă stele variabile. Cea mai cunoscută stea AGB este Mira.

Rezultatul final al acestui proces este de a îndepărta majoritatea învelişului stelei de nucleu sub forma unei „bule” ce formează o nebuloasă planetară pe care o recunoaştem cu toţii. În acest caz steaua cu o masă relativ mică a caştigat bătălia constantă cu gravitaţia, în a menţine echilibrul hidrostatic, chiar dacă a fost cu preţul vieţii. Nucleul este acum o pitică albă, fierbinte, şi mică (aproximativ de dimensiunea Pământului) şi deci cu o luminozitate scăzută. Astfel se încadreaza undeva cu mult sub Secvenţa Principala a diagramei H-R.

Pentru o stea mai masivă (între 2,5 şi 5 mase solare),

poate exista un carbon flash din moment ce nucleul mai masiv va favoriza fuziunea carbonului. Aceasta se întâmplă la temperaturi de aproximativ 500 milioane K, rezultatul fuziunii fiind neon, sodiu şi magneziu.

Dincolo de aceasta, reacţiile termonucleare pentru stele din ce în ce mai mari devin tot mai intense şi poate nici acum nu sunt înţelese pe deplin. Pentru cele mai masive stele reacţiile termonucleare din interior vor face ca nucleul stelei să se dilate şi să se răcescă, apoi se va contracta se se va încălzi cauzând o mişcare alternativă înainte şi înapoi în diagrama H-R.

Cantitatea de energie eliberată prin fuziunea progresivă a elementelor tot mai grele este în schimb tot mai mică, deşi reacţiile care se desfăşoară pot sintetiza destul de bine toate elementele din sistemul periodic al elementelor, inclusiv fierul. Steaua are acum o structură stratificată, straturile fiind alcătuite din elementele fuzionate, în ordine. După aceasta, însă, cantitatea de energie eliberată în urma fuziunilor nucleare este mai mică decât cea necesară pentru susinerea procesului de nucleosinteză –reacţia devine endotermă (nucleul de fier este cel mai stabil dintre toate elementele, şi reprezintă “bariera” dintre fuziune şi fisiune). Fuziunea în nucleul stelei se opreşte brusc şi stelele nu mai pot evita colapsul gravitaţional.

Nucleul din fier al stelei rezistă iniţial colapsului datorită presiunii degenerative electronice. Însă, dacă nucleul depăşeşte limita Chandrasekhar de aproximativ 1,4 mase solare, atunci presiunea degenerativă electronică nu mai este suficientă pentru a rezista colapsului gravitaţional, după modelul relativist. (mai mult…)

Digrama Hertzsprung-Russell Aprilie 22, 2010

Posted by EvolutieStelara in Evolutie Stelara.
Tags: , , , , , , , , , , , , , , , , , , ,
add a comment

După ce am trecut în revistă diferiţi parametri ce caracterizează o stea este timpul să îi ordonăm într-un singur sistem pentru a avea o imagine de ansamblu despre evoluţia unei stele.

Mulţi dintre noi suntem familiari cu reprezentarea sub formă de grafice şi diagrame a diferitelor mărimi. Un astfel de grafic folosit universal în ceea ce priveşte proprietăţiile stelare este Digrama Hertzsprung-Russell. Fără îndoială este unul dintre cele mai importante şi mai utile instrumente folosite în studiul astronomiei.

În 1912 doi astronomi, independent unul de celălalt au comparat diferite proprietăţi ale stelelor:  E. J. Hertzsprung (Danemarca) şi H. N. Russell (S.U.A). Cei doi au realizat grafice pe care treceau luminozitatea, culoarea (B-V), spectrul, temperatura şi au observat ceva remarcabil: stelele se află în regiuni distincte ceea ce ne arată că temperatura la suprafaţă (sau tipul spectral) este înrudit cu luminozitatea.

Avem mai jos o diagramă tipică H-R, fiecare punct din diagramă reprezentând o stea ale cărei proprietăţi precum tipul spectral şi luminozitatea au fost determinate.

Să observăm puţin elementele diagramei:

  • Axa orizontală reprezintă temperatura stelară (superficială) sau în mod echivalent, tipul spectral;
  • Temperatura creşte de la dreapta la stânga. Aceasta se întâmplă pentru că Hertzsprung şi Russell şi-au bazat diagrama pe secvenţa spectrală OBAFGRM, unde O reprezintă stelele mai fierbinţi şi se află la stânga, în timp ce M sunt stele mai reci şi sunt poziţionate în dreapta.;
  • Axa veticală reprezintă luminozitatea stelară reprezentată în unităţi de luminozitate solară  ;
  • Luminozităţile acoperă o axă întinsă, prin urmare diagrama uzează de scara logaritmică, unde fiecare gradaţie de pe axa verticală, înseamnă o luminozitate de 10 ori mai mare decât cea anterioară;
  • Fiecare punct de pe Diagrama H-R reprezintă un tip spectral şi o luminozitate caracteristice unei singure stele. De exemplu, punctul reprezentând Soarele corespunde tipului său spectral, G2, cu luminozitate .

De remarcat este modul în care creşte luminozitatea pe axa verticală a diagramei pe măsura ce temperatura superficială creşte pe axa orizontală, în timp ce ne deplasăm spre stânga. Avem astfel în colţul din stânga sus stele fierbinţi şi luminoase. În opoziţie, stelele din colţul dreapta sus sunt de această dată reci dar la fel de luminoase, iar cele din dreapta jos sunt reci şi pale opuse şi acestea cu cele din stânga jos, fierbinţi şi pale.

Diagrama H-R – secvenţa principală

Cea mai mare parte a stelelor prezente in diagrama H-R, peste 90%, se află pe o linie ce duce din stânga sus spre dreapta jos a diagramei, linie ce se numeşte secvenţa principală. În funcţie de diverşi parametri, parcurgând secvenţa principală întâlnim stele foarte mari şi luminoase dar şi stele pitice roşii. Dintre stelele prezente pe secvenţa principală a diagramei precizăm Soarele.

Diagrama H-R – stele gigante

Stelele gigante sunt stele reci, între 3000 şi 5000K dar foarte luminoase. O cauză a luminozităţii puternice este diametrul lor foarte mare, între 10-100 ori mai mare decât al Soarelelui ceea ce se reflectă într-o luminozitate de pâna la 1000 de ori luminozităţi solare. (ex. Arcturus, Aldebaran).

Diagrama H-R – stele supergigante

În partea din dreapta sus a diagramei H-R se află stelele supergigante. Acestea au un diametru de peste 1000 de ori mai mare decât al Soarelui, doar 1% dintre stele facând parte din aceasta categorie, dintre exemple putem enumera Antares, Betelgeuse, etc.

Diagrama H-R – stele pitice albe

Piticele albe, prezente în partea din stânga jos a diagramei H-R, sunt stele extrem de fierbinţi dar cu luminozitate scăzută. Temperatura foarte mare şi dimensiunile reduse sunt caracteristici în strânsă legătura ceea ce fac din piticele albe stele ce nu pot fi observate cu ochiul liber. Diametrul piticelor albe este asemănător cu al Pământului şi doar 9% dintre stele intră în această categorie.

Diagrama H-R – luminozitatea

În urma observaţiilor îndelungate s-a constatat că stelele pot avea temperaturi identice dar luminozităţi diferite. Cauza acestui fapt a fost identificată prin observarea liniilor spectrale, cu cât acestea sunt mai înguste, cu atât steaua este mai mare. Prin urmare factorul dimensiune ne conduce către aspectul densităţii şi constatăm că în stelele gigantice, densitatea fiind mai mica si atomii ciocnindu-se mai rar, determina liniile spectrale mai înguste din descrierea de mai sus. În opoziţie, dacă densitatea este mai mare, fapt ce pune în discuţie şi dimensiunile mai reduse ale stelei, atomii se vor ciocni mai des intre ei iar liniile spectrale vor fi mai difuze, mai largi.

Temperatura unei stele determină ce linii din spectrul său sunt mai proeminete. Prin urmare clasificarea unei stele după tipul său spectral, este în esenţă similar cu clasificarea unei stele în funcţie de temperatura sa. O privire asupra diagramei H-R ne va dezvălui că stelele pot avea temperaturi similare şi luminozităţi total diferite.

Spre exemplu o pitică albă poate avea o temperatura de 7000K; la fel şi o stea din Secvenţa Principală, o stea gigantă sau o stea supergigantă. Totul depinde de luminozitatea ei. Din nou liniile spectrale ne spun cărei categorii îi aparţine steaua studiată.

În mod empiric s-a stabilit că, cu cât este mai luminoasă o stea, cu atât sunt mai înguste liniile de hidrogen din spectrul său (regulă valabilă pentru stelele din tipul spectral B până la tipul spectral F). Teoria din spatele acestui fenomen este destul de complexă dar deocamdată ne vom limita a menţiona că acele diferenţe măsurabile din spectrul unei stele se datorează diferenţelor de temperatură din atmosfera ei, motiv pentru care se produc liniile de absorbţie. Densitatea şi presiunea gazelor încălzite din atmosferă afectează liniile de absorbţie şi hidrogenul cu precădere. Dacă presiunea şi densitatea sunt mari, atomii de hidrogen se ciocnesc mai des şi interacţionează cu alţi atomi din gaz. Coliziunile cauzează schimbări de energie în atomii de hidrogen, ceea ce are ca rezultat linii spectrale de hidrogen pronunţate.

La o stea gigantă luminoasă, presiunea şi densitatea din atmosfera stelei este foarte scăzută datorită masei extinse pe un volum atât de mare. Prin urmare atomii (şi ionii)  sunt relativ îndepărtaţi, însemnând că ciocnirile dintre ei sunt mult mai puţine, ceea ce se reflectă în linii de hidrogen mai înguste. Într-o stea din Secvenţa Principală atmosfera fiind mai densă decât la o gigantă sau o supergigantă, cu coliziuni mai frecvente între atomi, liniile spectrale de hidrogen sunt mai largi.

În capitolele precedente am văzut cum putem asocia stelelor diferite clase de luminozitate. În figura de mai jos vedem cum aceste stele din diferite clase de luminozitate îşi ocupă locul în Diagrama H-R.

Cunoscând atât tipul spectral cât şi luminozitatea unei stele un astronom va şti imediat unde îşi are locul o stea în Diagrama H-R. De exemplu, o stea de tip G2V este o stea din Secvenţa Principala cu o luminozitate de 1 şi o temperatură la suprafaţă de aproximativ 5700K. În acelaşi fel, pentru Aldebaran, care este o stea de tip K5III, diagrama va demonstra că este o gigantă roşie cu o luminozitate de  şi o temperatura la suprafaţă de 4000K.

Diagrama H-R şi raza stelară

Diagrama H-R ne poate furniza în mod direct informaţii cu privire la raza stelară, pentru că luminozitatea unei stele depinde atât de temperatura la suprafaţă cât şi de suprafaţa sau raza acesteia.

Primul lucru pe care îl observăm în imaginea de mai sus este că stelele nu sunt aşezate haotic în diagramă ci par a urma o anumită regulă ce le repartizează în regiuni distincte. Prin urmare constatăm fără urma de îndoială că temperatura (clasa spectrală) şi luminozitatea se află în legătură. Grupările ce se formează se caracterizează astfel:

(mai mult…)

Clase de luminozitate Aprilie 11, 2010

Posted by EvolutieStelara in Evolutie Stelara.
Tags: , , , , , , , , , , , , , , , , , , ,
add a comment

Am văzut în enunţurile anterioare cum stelele se disting prin spectrul lor (deci prin temperatură). Să ne amintim tipul de clasificare:

O, B, A, F, G, K, M, R, N, S

Majusculele desemnează deopotrivă stele de temperaturi ridicate cât şi de temperaturi scăzute. Secvenţa porneşte de la stelele albastre, fierbinţi (de la O la A) şi merge până la cele roşii şi reci (tipurile K, M şi L). Pe lângă acestea mai sunt şi stele rare fierbinţi, stele Wolf-Rayet (clasele WC şi WN), stele care explodează (Q) şi stele atipice (P). Tipurile R, N şi S se suprapun peste clasa M, prin urmare clasele R şi N au fost reclasificate ca stele de tip C, litera C reprezentând existenţa carbonului în compoziţia stelei. Recent a fost introdusă o nouă clasă – L. Această ultimă categorie desemnează stele cu o temperatură foarte scăzută: 1900-1500 K. Mulţi astronomi sunt de părere că aceste stele sunt de fapt piticele brune. Mai departe tipurile spectrale sunt împărţite în zece clase spectrale începând de la 0 până la 9. Spre exemplu steaua A1 din clasa A este mai fierbinte decât steaua A8 din aceeaşi clasă, dar în acelaşi timp aceasta din urmă este mai fierbinte decât o stea din clasa F0. În continuare, prefixe şi sufixe pot ilustra trăsături diferite :

e – stea cu linii de emisie în spectru (câteodată desemnat şi prin  f  la câteva

stele de tip O);

m – linii din spectru ce marchează prezenţa metalelor;

p – spectru atipic;

v – spectru variabil;

q – o stea cu deplasare spre roşu sau spre albastru (ex. Stelele din P Cygni).

Uneori când ne referim la stelele din categoriile O, A, şi B câteodată vom spune stele tinere (early-type stars) în timp ce stelele mai reci K, M,L, C, şi S vor fi denumite ca stele-târzii (later-type stars). Stelele F şi G sunt numite stele-intermediare (intermediate-type stars). Soarele fiind o stea de tip G2, spectrul său este dominat de linii de calciu şi fier.

În final stelele pot fi clasificate în funcţie de luminozitate, ceea ce este în strânsă legătură cu strălucirea intrinsecă. Astfel avem: (mai mult…)

Spectrul stelelor şi importanţa clasei spectrale Martie 30, 2010

Posted by EvolutieStelara in Evolutie Stelara.
Tags: , , , , , , , , , , , , , ,
add a comment

Clasificarea spectrală – Angelo Secchi;

Prima încercare de a clasifica stelele după spectrul lor a fost făcută de Angelo Secchi în 1863-1867:

– stele alb-albastre, cu linii proeminente ale hidrogenului în spectru, Sirius;

– stele galbene, liniile hidrogenului mai slabe iar liniile metalelor vizibile: Capella, Soarele;

– stele portocalii, spectre complicate cu multe linii, Betelgeuse, Mira;

– stele roşii, spectre cu linii proeminente ale carbonului: R Cygni.

Clasificarea se baza pe proprietăţile a 500 de stele.

Clasificarea spectrală: E. l. Pickering, Annie Jump Cannon şi Wilhelmina Fleming.

Pe la 1890, la Harvard College Observatory, astronomul Pickering, împreună cu colaboratoarele Annie Jump Cannon şi Wilhelmina Fleming au pus bazele clasificării spectrale moderne. Au folosit spectrele a 225000 de stele, toate din catalogul Henry Draper. Au început prin a da câte o literă a alfabetului fiecărui tip de spectru de la A la Z. Au observat că nu sunt atât de multe tipuri de spectre astfel că au început să renunţe la unele dintre litere, rămânând în final cu: O, B, A, F,G, K, M, R, N, S fiecare tip spectral prezentând linii de absorbţie a unor elemente chimice, semn că acestea există în atmosferă. Fiecare clasă spectrală este împărţită în 10 părţi de la 0 la 9.

Este fascinant cum doar prin studiul luminii unei stele putem afla atât de multe despre ea. Tot ce poate ajunge până la noi de la o stea este lumina şi aceasta este tot ce avem nevoie pentru a determina cât este de fierbinte, cât este de departe, în ce direcţie se îndreaptă şi dacă se roteşte. Ajungem astfel cu aceste date să calculăm vârsta stelei, masa ei şi perioada de viaţă rămasă, etc. Este atât de important spectrul unei stele, acel ADN stelar, încât de aici înainte pe tot parcursul lucrării când ne vom referi la o stea vom menţiona întotdeauna şi clasificarea ei spectrală.

Determinarea clasei spectrale a unei stele este sarcină relativ usoară. Pentru aceasta este nevoie de un spectroscop montat pe ocularul telescopului. În acest fel lumina emisă de stea poate fi colectată şi fotografiată cu o cameră CCD. Rezultatul este ceea ce se numeşte spectru.

Practic spectrul constă în transpunerea grafică a cantitatii luminii emise si a diferitelor lungimi de undă (culoare) provenite de la o stea. De remarcat că suprafaţa asemănătoare cu un curcubeu, a spectrului este străbătută din loc in loc de linii de culoare închisă. Acesea se numesc linii de absorbţie  şi se formează în atmosfera stelei. În cazuri rare pot apărea şi linii de culoare deschisă numite linii de emisie. De obicei aceste linii apar destul de rar la stele însă sunt foarte proeminente la nebuloase.

Electronii din atomii de la suprafaţa stelei pot reţine doar anumite energii, precum treptele unei scări ce pot avea doar anumite înălţimi ce permit urcarea lor. Uneori un electron al unui atom, să presupunem un atom de hidrogen, poate fi „aruncat” de la un nivel de energie scăzut la unul mai înalt, prin coliziune cu un alt atom. În cele din urmă va coborî la nivelul mai scăzut. Energia pe care atomul o pierde când electronul revine la nivelul de energie iniţial se eliberează prin emiterea unui foton. Acest foton emis are o proprietate unică – deţine exact cantitatea de energie pe care a pierdut-o electronul, ceea ce în schimb înseamnă că fotonul are o anumită lungime de undă şi o anumită frecvenţă.

Când gazul de hidrogen este încălzit la temperaturi înalte, numărul coliziunilor dintre atomi pot propulsa în mod continuu electroni la nivele ridicate de energie, apărând astfel liniile de emisie spectrală.

Originea liniilor de absorbţie se regăseşte în cantităţile diferite de elemente din atmosfera mai rece a stelelor (pe lângă hidrogen şi heliu mai găsim şi alte elemente sau metale prezente în cantităţi foarte reduse în compoziţia chimică a corpurilor cereşti).

Fotonii nu pot fi doar emişi, ei pot fi şi absorbiţi. Acest proces are ca rezultat trecerea electronului la un nivel de energie mai ridicat ceea ce poate avea loc doar dacă fotonul are o încărcătura energetică specifică. Prea multă sau prea puţină energie, chiar şi când vorbim de cantităţi minuscule, poate face ca fotonul să nu interacţioneze cu electronul.

Acele treceri între diferite nivele energetice ale electronului sunt numite tranziţii. Din desenul de mai jos deducem că liniile de absorbţie întunecate şi cele de emisie strălucitoare au loc la exact aceleaşi lungimi de undă, indiferent dacă gazul de hidrogen spre exemplu, emite sau absoarbe lumina. Cu alte cuvinte, liniile de emisie sunt rezultatul tranziţiei electronilor de la nivele înalte de emisie la nivele scăzute, în timp ce liniile de absorbţie sunt rezultatul tranziţiei de la energie scăzută la una înaltă.

 

Spectrul conţine astfel „amprentele” fiecărui element chimic şi fiecare este unic în felul său. Hidrogenul care este cel mai simplu element, cu un singur electron are un spectru simplu, dar pentru elemente cu mai mulţi electroni şi cu mai multe tranziţii posibile, spectrul poate fi mult mai complex.

Factorul determinant în apariţia unei linii de absorbţie este temperatura din atmosfera stelei. Liniile de absorbţie ale unei stele fierbinţi vor fi diferite de cele ale unei stele mai reci. Clasificarea unei stele putem spune că este rezultatul analizei amănunţite a spectrului său şi a măsurării liniilor de absorbţie din spectru. Prin urmare clasificarea unei stele este determinată în primul rând de temperatura din atmosfera stelei şi nu de cea din nucleul acesteia. Analiza structurii liniilor spectrale ne oferă informaţii precise despre presiune, rotaţie şi chiar prezenţa unei alte stele cu care steaua cercetată ar putea forma un sistem binar.

Dimensiunea, Masa, Fluxul, Luminozitatea şi Raza Martie 17, 2010

Posted by EvolutieStelara in Evolutie Stelara.
Tags: , , , , , , , , ,
2 comments

Pe lângă interferometrie, tehnică folosită în măsurarea stelei Betelgeuse, dimensiunea stelelor mai poate fi măsurată prin determinarea luminozităţii (derivată din distanţă şi strălucire) şi temperatura la suprafaţă, determinată din clasa spectrală.

Pentru a calcula dimensiunea stelei se foloseşte Legea Stefan-Boltzmann, conform căreia cantitatea de energie care radiază dintr-un metru pătrat / secundă, din suprafaţa stelei este proporţională cu temperatura la suprafaţa stelei (T) ridicată la puterea 4. Cu alte cuvinte, fluxul de energie (F) este proporţional cu temperatura la suprafaţa stelei (T). Un obiect rece are o energie termică mai scăzută decât unul fierbinte.

Să ne reamintim precizările din capitolul dedicat luminozităţii, şi anume faptul că luminozitatea unei stele este măsura energiei emise la suprafaţă în fiecare secundă. Această luminozitate este mai exact fluxul (F) multiplicat cu numărul de metri pătraţi din suprafaţa stelei. Presupunând că toate stelele sunt perfect sferice, atunci cantitatea exprimată în enunţul de mai sus este determinată de suprafaţa stelei; utilizând formula ce exprimă suprafaţa stelei: , unde R este raza stelei (R masurată din centrul stelei până la suprafaţa acesteia).

Fluxul unei stele este dat de Legea Stefan-Boltzmann :

Relaţia dintre flux (F), luminoziate (L) şi rază (R) este:

unde:

L – luminozitatea stelei exprimată în watts (W);

R – raza stelei exprimată în metri (m);

σ – constanta Stefan-Boltzmann;

T – temperatura stelei în grade Kelvin (K).

Ecuaţia precedentă ne arată cum o stea rece (cu o temperatură superficială scăzută) va avea un flux scăzut, însă poate avea o luminozitate crescută pentru că ar putea avea o rază mare şi implicit o suprafaţă mare. În acelaşi fel o stea fierbinte (cu o temperatură superficială ridicată) poate avea o luminozitate scazută dacă are o rază mică, însemnând că suprafaţa ei este de asemenea mică.

Chiar dacă putem determina parametri precum rază, temperatură, luminozitate şi strălucire, câteodată este mai relevant să exprimăm aceste valori raportate la Soare. Astfel în loc să exprimăm temperaturi de 54.000K am spune că temperatura este de 10 ori temperatura soarelui. Aceleşi lucru se aplică şi în cazul luminozitaţii şi razei stelei.

Să presupunem Soarele ca fiind o stea tipică şi astfel să comparăm caracteristicile unei stele oarecare cu cele ale soarelui. Vom avea:

(mai mult…)